

Post-procedural anticoagulation after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a multicentre, randomised, double-blind trial

Shaoping Nie, M.D., Ph.D., FESC, FACC, FSCAI

Beijing Anzhen Hospital, Capital Medical University, Beijing, China

National Clinical Research Center of Cardiovascular Diseases, China

On behalf of G Montalescot, Y Li, J Lu, Y Yan and the RIGHT trial investigators

Background

Empirical prescription of post procedural anticoagulation (PPA) after primary PCI is common worldwide, with various drugs and dosages

CCC-ACS registry (2014-2019)1

- 159 tertiary and 82 secondary hospitals in China
- 34,826 STEMI patients with primary PCI, 75.4%
 were treated with PPA

HORIZONS-AMI and EUROMAX pooled analysis²

- HORIZONS-AMI 123 centres in 11 countries and EUROMAX 65 sites in 9 countries
- Among 5239 patients with primary PCI, 41.1%

Current ESC and AHA/ACC guidelines do not provide recommendations for PPA after primary PCI in patients with STEMI

Study Design

* Each center will use only one anticoagulant in all patients randomized at this center

Study Endpoints

Primary efficacy endpoint

Composite of all-cause death, non-fatal myocardial infarction, non-fatal stroke, stent thrombosis (definite) or urgent revascularization (of any vessel) at 30 days

Primary safety endpoint

Major bleeding (BARC definition type 3 to 5) at 30 days

Key Baseline Characteristics

Variables	PPA (n=1494)	Placebo (n=1495)
Age, years; mean (SD)	60.7 (12.4)	61.1 (12.3)
Male sex	1195/1494 (80.0)	1175/1495 (78.6)
Current smoking	763/1494 (51.1)	712/1495 (47.6)
Hypertension	830/1494 (55.6)	800/1495 (53.5)
Diabetes	359/1494 (24.0)	372/1495 (24.9)
Dyslipidaemia	637/1494 (42.6)	623/1495 (41.7)
Prior myocardial infarction	107/1494 (7.2)	92/1495 (6.2)
Chronic kidney disease	30/1494 (2.0)	28/1495 (1.9)
Anterior STEMI	640/1494 (42.8)	658/1495 (44.0)
Door-to-balloon time, minutes; median (IQR)	74 (55 <i>,</i> 99)	75 (53, 103)
Aspirin before angiography	1467/1494 (98.2)	1458/1495 (97.5)
P2Y ₁₂ inhibitor loading before angiography	1425/1494 (95.4)	1407/1495 (94.1)

Primary Efficacy Endpoint

PPA

Primary Safety Endpoint

Secondary Exploratory Findings

100

Placebo better

A Primary efficacy outcome in three anticoagulation regimen groups						
Subgroup	PPA	Placebo	Hazard ratio (95%CI)	p for interaction 0.015		
	no./tota	ıl no. (%)				
Enoxaparin	10/474 (2·1)	21/471 (4.5)	-	0.46 (0.22-0.98)		
UFH	11/510 (2·2)	3/512 (0·6)	•	3.71 (1.03-13.28)		
Bivalirudin	16/510 (3·1)	13/512 (2·5)	-	1.24 (0.60-2.59)		
			T T			

B Primary safety outcome in three anticoagulation regimen groups

Subgroup	PPA	Placebo	Hazard ratio (95%CI)	p for interaction 0.679
	no./tota	l no. (%)		
Enoxaparin	3/466 (0.6)	5/470 (1·1)		0.60 (0.14-2.52)
UFH	2/503 (0·4)	4/508 (0.8)		0.50 (0.09-2.75)
Bivalirudin	3/499 (0.6)	2/510 (0·4)		1.54 (0.26-9.24)
			O·1 1 10 10 PPA better Placebo better	00

PPA better

Conclusion & Clinical Implications

- Routine PPA using low-dose anticoagulation after primary PCI is safe but does not improve ischaemic outcome at 30 days
- Our data suggest that the three anticoagulants may not be equivalent in the prevention of 30-day ischaemic events but this finding deserves confirmation in future studies